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Abstract. This paper studies the properties of solitary-wave solutions of a particular fifth-order evolution equation
that models water waves with surface tension. Existence and nonexistence results are surveyed and strengthened.
An accurate numerical code is devised and used to show the small dispersive effects of solitary-wave collisions.

Key words: solitary wave, surface tension, water wave, Korteweg-deVries equation, Boussinesq expansion.

1. Introduction

The importance of solitary waves in the study of nonlinear wave phenomena dates back to John
Scott Russell’s original experimental observations [1] of waves generated in a canal; see [2] for
historical details. Their existence remained controversial until Boussinesq [3, Equation (30),
p. 77], [4, Equations (283, 291)] derived the unidirectional shallow water model

ut + ux + uux + uxxx = 0, (1)

now known as the Korteweg-deVries equation, and found the explicit sech2 formula for its
solitary-wave solutions. In the 1960s, it was discovered that the Korteweg-deVries equation
forms a completely integrable Hamiltonian system. Its solitary-wave solutions are in fact
solitons, meaning that they interact cleanly [5, 6] having the same amplitude and velocity
before and after collision, whose only effect is an overall phase shift. The alternative shallow
water model

ut + ux + uux − uxxt = 0, (2)

proposed by Benjamin, Bona and Mahony [7] also has explicit sech2 solitary-wave solutions,
but is not integrable, and one numerically observes small dispersive effects when the waves
collide [8].

Both shallow water models (1) and (2) are first-order in the Boussinesq perturbation ex-
pansion and serve to model weak nonlinearities. Fully nonlinear models have been recently
shown to admit nonanalytic solitary-wave solutions [9, 10]. Quite a number of higher-order
weakly nonlinear models, including three integrable cases: the fifth-order Korteweg-deVries,
Sawada-Kotera, and Kaup equations. We refer the reader to [11] for a comprehensive survey
of the different models and their solitary-wave solutions. Such higher-order equations exhibit
a variety of solitary-wave phenomena, ranging from exact soliton solutions, to nonintegrable
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cases which admit exact sech2 solutions, to models (which include most of those of relevance
in shallow water theory) that do not admit solitary-wave solutions at all.

In this work, we concentrate on the simplest and most well studied case. The fifth-order
nonlinear evolution equation

ut + (u2)x + uxxx + εuxxxxx = 0 (3)

is known as thecritical surface-tension model. This equation arises in the modeling of weakly
nonlinear waves in a wide variety of media, including magneto-acoustic waves in plasmas
[12] long waves in liquids under ice sheets [13, 14] and water waves with surface tension
when the Bond number is near the critical valueτ = 1

3, which is the one situation where the
usual Korteweg-deVries model (1) no longer applies,cf. [15–17].

The existence and nature of solitary-wave solutions for (3) is dependent on the sign of the
parameterε multiplying the fifth-order term. Whenε > 0, a dynamical systems argument
[15, 18] shows that (3) admits traveling-wave solutions that decay to zero atx → +∞.
However, Amick and McLeod [15] and Eckhaus [19, 20] rigorously proved that the model (3)
does not possess a solitary wave of elevation forε > 0 sufficiently small. In this paper, we
extend their result to all positiveε. On the other hand, Kichenassamy [21] uses a variational
approach to prove the existence of ‘dark’ solitary waves, meaning waves of depression that
have negative wave speeds.

For the model (3) withε < 0, Yamamoto and Takizawa [22] produced an explicit solitary-
wave solution at one particular (positive) wave speed in terms of a sech4 function

u(x, t) = − 105

338ε
sech4

[√−1

52ε

{
x + 36

169ε
t

}]
. (4)

Proof of existence of such solitary-wave solutions for a range of wave speeds, which includes
the known exact solution, can be found in [23–25] and their nonlinear stability is proved in
[26]. In recent numerical studies of the break-up of initial data, Hyman and Rosenau [27] have
observed a variety of localized pulsating ‘multiplet’ solutions.

More general types of ‘semi-localized’ solitary-wave solutions have also been investigated.
Kawahara [17] gave the first numerical evidence of oscillatory solitary-wave solutions, which
no longer decay to zero, but have small amplitude oscillatory tails at large distances. These
solutions are rigorously characterized as singular perturbations of Korteweg-deVries solitons
[16, 24, 28]. In addition, envelope solitary-wave solutions were discovered in [29]. Numerical
experiments on semi-localized solutions and their interactions appear in [30–32].

In this paper, we present a general proof of the nonexistence of solitary-wave solutions
traveling to the right (respectively left) whenε > 0 (respectivelyε < 0). We then discuss some
of our preliminary numerical computations of the collisions between two localized solitary
waves, showing that dispersive effects are present, albeit of extremely small amplitude. A
highly accurate numerical scheme is required to unambiguously detect the dispersive remnants
of a collision. These results form part of an ongoing study of the solitary-wave solutions of
the general class of higher-order nonlinear evolution equations.
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2. Nonexistence of solitary waves

In this section, we shall prove that the fifth-order evolution Equation (3) has no solitary-wave
solutions traveling to the right whenε > 0, and has no solitary-wave solutions traveling to the
left whenε < 0. The elementary rescaling

u(x, t) 7→ − 5
√
ε u

(
− x

5
√
ε
, t

)
reduces (3) to

ut + (u2)x + µuxxx − uxxxxx = 0, (5)

with µ = −ε−3/5. (The minus sign has been chosen so that the solitary-wave solutions that do
exist are waves of elevation traveling to the right.) To prove the nonexistence result, it suffices
to show that (5) has no solitary-wave solutions traveling to the left for any constantµ ∈ R.

The equation for traveling waves is obtained by using theansatzu = φ(x − c t), wherec
is the wave speed, in Equation (5)

−cφ′ + 2φφ′ + µφ′′′ − φ(5) = 0.

Integrating once and, forc < 0, rescaling viaφ(x) = c ϕ( 4
√−c x), we obtain

−ϕ + ϕ2+ pϕ′′ + ϕ(4) = 0, (6)

wherep = −(−c)−1/2µ. The integration constant was set to zero since we are interested
in existence of solitary-wave solutions that decay to zero at infinity. Equation (6) is a four-
dimensional dynamical system having a fixed point at the origin(0,0,0,0) near which there
are a two-dimensional center manifold, a one-dimensional stable manifold and a one-
dimensional unstable manifold. A solitary-wave solution will exist if and only if the stable
and unstable manifolds intersect.

LEMMA 1. Any orbit in the stable manifold at the origin of(6) has a Dirichlet expansion of
the form

ϕ(x) =
∞∑
n=1

cn e−λnx, where λ =
√
−p +√p2+ 4

2
. (7)

The series(7) is convergent on the interval(x0,∞) and has an analytic extension to the half
plane{z ∈ C | Rez > x0}, wherex0 > −∞ is the abscissa of convergence of(7).

Proof. The fact that any orbit in the stable manifold has an expansion of the form (7) for
x sufficiently large is a particular case of the result in [11, Theorem 7], which applies to more
general fifth-order models; see also [33]. The coefficientscn satisfy the recursion relation

cn = −1

λ4n4+ pλ2n2− 1

n−1∑
k=1

cn−kck

= −1

(λ4n2+ 1)(n2− 1)

n−1∑
k=1

cn−kck, n > 2, (8)
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which follows immediately upon substitution of (7) in (6). Note thatcn = cn1dn, wheredn
satisfies the same recurrence (8) withd1 = 1. A simple inductive argument shows that
{dn} is an alternating sequence with| dn | < 21−n, which implies that (7) converges for
x > λ−1 log 1

2 | c1 |. Let x0 denote the infimum of the set of allx’s for which (7) converges.
We claim thatx0 > −∞. Note that

Jn = 1

(λ4+ 1
n2 )(1− 1

n2 )

n−1∑
k=1

(
1− k

n

)4(
k

n

)4 1

n
→ B(5,5)

λ4
as n→∞,

whereB(α, β) is the usual Beta function. ChooseN > 0 so thatJn > 1/n whenevern > N .
We shall prove by induction that

|dn| > ann4, where a = min

{
k

√ |dk|
k4

∣∣∣∣∣16 k 6 N
}
. (9)

The required estimate holds for 16 k 6 N by the definition ofa. To prove the induction step,
let n > N ; then

|dn+1| =
∑n

k=1 |dn+1−kdk|
(λ4(n+ 1)2+ 1)((n+ 1)2− 1)

> an+1∑n
k=1(n+ 1− k)4k4

(λ4(n+ 1)2+ 1)((n+ 1)2− 1)
= an+1(n+ 1)5Jn+1 > an+1(n+ 1)4.

As a result of (9), the abscissa of convergence of (7) satisfiesx0 > λ−1loga|c1|. 2
It follows from Lemma 1 that, in theϕϕ′ϕ′′ϕ′′′-phase space, there are only two orbits

approaching the fixed point(0,0,0,0). One orbit corresponds to the series expansion (7) with
the coefficientc1 > 0, going to the origin in the direction(−1, λ,−λ2, λ3). The other orbit has
the series expansion (7) with the coefficientc1 < 0, approaching the origin from the direction
opposite to(−1, λ,−λ2, λ3). The latter orbit is not a homoclinic orbit because its Dirichlet
expansion has a singularity at its abscissa of convergence.

LEMMA 2. If c1 < 0, then the sumϕ of the Dirichlet expansion (7) has a singularity at its
abscissa of convergencex0; in fact limx→x+0 ϕ(x) = −∞.

Proof. If c1 < 0, thencn = cn1dn < 0 for all n, which implies thatϕ has a singularity at
its abscissa of convergence,cf. [34]. Assume that infx>x0 ϕ(x) > −∞. Sinceϕ′(x) > 0 and
ϕ(x) < 0, ϕ is an increasing function with a lower bound on the interval(x0,∞). Therefore,
the limit limx→x+0 ϕ(x) = m < 0 exists. Whenx > x0, the derivatives ofϕ can be expressed
by [15]

ϕ(j)(x) = 1

p

∫ ∞
x

K(x − y) dj−1

dyj−1
(ϕ(y)2− ϕ(y))dy, (10)

where

K(z) =
{

1− cos
√
pz, p > 0,

cosh
√−p z− 1, p < 0.
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If ϕ(x0) exists, then (10) allows us also to defineϕ(j)(x0) continuously. But, given the initial
conditionsϕ(x0), ϕ

′(x0), ϕ
′′(x0), ϕ

′′′(x0), the classical theory of ordinary differential equa-
tions shows that the solutionϕ to (6) has an analytic extension in a neighborhood ofx0, which
contradicts the fact thatϕ has a singularity there. 2

The remaining question is whether the solution represented by (7) withc1 > 0 is a
homoclinic orbit. We shall use the following result to discuss this issue.

THEOREM 3. For anyp ∈ R, there exists a unique solution of the boundary value problem

−ϕ + ϕ2+ pϕ′′ + ϕ(4) = 0, ϕ′(0) = ϕ(∞) = 0. (11)

The solution satisfiesϕ′(x) < 0 for x > 0, andϕ′′′(0) > 0.

Proofs of Theorem 3 in the casep > 0 can be found in [15, 18]. The casep 6 0 is
proved similarly, so we shall omit the full argument here. We next prove the symmetry of
solitary-wave solutions; see [35] for the corresponding result for waves with oscillatory tails.

LEMMA 4. A solitary-wave solution of(6) is symmetric with respect to some pointx1, so
ϕ(x1+ x) = ϕ(x1− x) for all x.

Proof. Equation (6) is invariant under reflectionx 7→ −x. As a consequence, ifϕ(x) is
an orbit in the unstable manifold, thenϕ(−x) is an orbit in the stable manifold, and so has a
Dirichlet expansion

ϕ(x) =
∞∑
n=1

an1dn eλnx, (12)

wherea1 > 0, for x sufficiently large negative. Comparing the two series (7), (12), we infer
thatx1 = 1/2λ logc1/a1 should be the point of symmetry. Indeed,ϕ(2x1+x) andϕ(−x) have
the same convergent Dirichlet series forx sufficiently large, and so the analyticity of solitary-
wave solutions, as indicated by (10), and the classical theory of ODE [36, p. 281] imply that
they are equal:ϕ(2x1 + x) = ϕ(−x) for all x ∈ R. 2

If the functionϕ in Theroem 3 is a solitary-wave solution, then 0 cannot be its point of
symmetry, which must therefore be negative, sinceϕ′′(0) 6= 0. We shall use this obser-
vation combined with Theorem 3 to show nonexistence of solitary-wave solutions, thereby
generalizing the results in [15].

THEOREM 5. For any constantp, the dynamical system(6) has no homoclinic orbit near
the origin, i.e., there is no bounded solutionϕ of (6) that satisfies

lim
x→∞ϕ(x) = 0= lim

x→−∞ϕ(x).

Proof. Assume that (6) has a solitary-wave solutionϕ. Since (6) is translation invariant,
one may let its point of symmetry bex1 = 0, and soϕ is an even function. Theorem 3 implies
that there is a pointx0 > 0 such that

ϕ′(x0) = ϕ′(−x0) = 0, ϕ′′′(x0) = −ϕ′′′(−x0) > 0,

ϕ(x0) = ϕ(−x0) >
3
2, ϕ′′(x0) = ϕ′′(−x0) < 0.

(13)
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The inequalityϕ(x0) >
3
2 follows from the useful identity

ϕ′ϕ′′′ = −p(ϕ
′)2

2
+ ϕ

2

3
(3

2 − ϕ)+
(ϕ′′)2

2
, (14)

which results from multiplying (6) byϕ′ and integrating once.
Let us first assumep 6 0. Then−pϕ′′(−x0) 6 0 and ϕ(−x0)(1 − ϕ(−x0)) < 0,

so that Equation (6) implies thatϕ(4)(−x0) < 0. As long asϕ(4)(x) remains negative, for
x > −x0, ϕ, ϕ′, ϕ′′, ϕ′′′ will all be decreasing functions, withϕ′, ϕ′′, ϕ′′′ remaining strictly
negative. However, sinceϕ is an even function, it has to stop decreasing at some point in
the interval(−x0,0 ]. Therefore, there is a point−x0 < x1 < 0 such thatϕ(4)(x1) = 0.
Sinceϕ′(x1), ϕ

′′(x1), ϕ
′′′(x1) < 0, Equation (6) implies that 06 ϕ(x1) 6 1. Forx > x1,

ϕ, ϕ′, ϕ′′ will continue to decrease as long asϕ′′′ < 0. Supposex2 > x1 is the first point where
ϕ′′′(x2) = 0. Sinceϕ′′(x2) < 0 andϕ(x2) < 1, the right-hand side of (14) is positive, which is
a contradiction, and henceϕ′′′ cannot vanish forx > x1, which means thatϕ will decrease for
all x > x1. However, this contradicts the original assumption thatϕ is an even function, and
hence homoclinic orbits do not exist whenp 6 0.

In fact, we can show thatϕ blows up at some finite point. Assume thatϕ is defined on the
real line. It follows from the above proof thatϕ is increasing,ϕ′(x) > 0 andϕ′′(x) < 0 when
x < x0. This implies thatϕ(x)→ −∞ asx → −∞, and hence there exists a pointx3 where
ϕ(x3) = 0 andϕ(x) < 0 for x < x3. Multiplying both sides of (14) byϕ′ and integrating from
x to x3, we obtain

ϕ′(x)2ϕ′′(x) = ϕ(x)3

6
− ϕ(x)

4

12
+ ϕ′(x3)

2ϕ′′(x3)

−
∫ x3

x

(
−p

2
ϕ′(y)3+ 5

2ϕ
′(y)ϕ′′(y)2

)
dy

6 ϕ(x)3

6
− ϕ(x)

4

12
.

Multiplying both sides of the latter inequality byϕ′ and integrating again, we have

ϕ′(x)4 > (ϕ′(x3))
4+ ϕ(x)

4

6
− ϕ(x)

5

15
> −ϕ(x)

5

15
.

We conclude that

ϕ(x) 6 ϕ(y)(
1− 1

4(y − x)4
√
− 1

15ϕ(y)
)4

for x < y < x3 sufficiently close tox3, and henceϕ must blow up at some finite point.
Now suppose thatp > 0. Again, assume that (6) has an even solitary-wave solutionϕ,

satisfying conditions in (13). Integration of (6) on the interval(−x0, x) yields

ϕ′′′(x)+ pϕ′(x) =
∫ x

−x0

[ϕ(y)− ϕ(y)2]dy + ϕ′′′(−x0). (15)
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If ϕ(x) > 1 for−x0 < x < x0, then (15) impliesϕ′′′(x)+ pϕ′(x) 6 0, which contradicts the
fact thatϕ′′′(x0)+pϕ′(x0) > 0. Hence, there must be a pointx̃ ∈ (−x0, x0) such thatϕ(x̃) < 1.
Let−x0 < x1 < x0 be the first point afterx0 whereϕ(x1) = 3

2. Thenϕ′(x1) 6 0; moreover,
if ϕ′(x1) = 0, then (14), (15) imply thatϕ′′(x1) = 0, ϕ′′′(x1) < 0. Therefore,ϕ′(x) < 0
for nearbyx > x1. Moreover, onceϕ(x)3

2, the derivativeϕ′(x) must remain negative except
for possibly one point. Suppose thatx2 > x1 is the first point satisfyingϕ′(x2) = 0. Since
ϕ(x2) <

3
2, it follows from (14) thatϕ(x2) = ϕ′′(x2) = 0, andϕ′′′(x2) 6= 0 as otherwiseϕ

would be a trivial solution. In fact,ϕ′′′(x2) < 0 because if it were positive, we would have
ϕ′(x) > 0, ϕ(x) < 0, for nearbyx < x2. Thus,ϕ′(x) < 0, ϕ(x) < 0 when x > x2.
Equation (14) implies that thatϕ′ will remain negative for allx > x2, soϕ is decreasing,
which contradicts our original assumption thatϕ is a homoclinic orbit represented by an even
function. We conclude that (6) has no solitary-wave solutions whenp > 0 also.

The last issue to discuss is howϕ(x) behaves forx < x0. Let

k(x) = 1

p

[
x − sin(

√
p x)√
p

]
. (16)

Note thatk(x) < 0 for x < 0, while 06 k′(x) 6 1/p,−16 k′′′(x) 6 1 for all x. Then

ϕ(x) = −
∫ x0

x

k(x − y)(ϕ(y) − ϕ(y)2)dy + p ϕ(x0)k
′(x − x0)

+
3∑
j=0

ϕ(j)(x0)k
(3−j)(x − x0). (17)

In view of (13), this implies that

ϕ(x) 6 ϕ(x0)k
′′′(x − x0)+ p ϕ(x0)k

′(x − x0), (18)

providedϕ(y) > 1 for all y ∈ [x, x0]. The left hand-side of (18) is bounded and thusϕ(x) 6
3ϕ(x0). On the other hand,

ϕ′′(x)+ pϕ(x) = −
∫ x0

x

(x − y)(ϕ(y)− ϕ(y)2)dy

+ϕ′′(x0)+ pϕ(x0)+ ϕ′′′(x0)(x − x0). (19)

If ϕ(x) > 1 for all x < x0, thenϕ′′(x) + pϕ(x) 6 pϕ(x0) + ϕ′′′(x0)(x − x0) → −∞ as
x → −∞, which is impossible. On the other hand, onceϕ(x) < 1, its derivativeϕ′ remains
nonnegative, soϕ(x) decreases asx decreases. Suppose thatϕ is defined everywhere and
limx→−∞ ϕ(x) = c0 exists. Ifc0 > 0, then the identity

ϕ′′′(x)+ pϕ′(x) =
∫ x0

x

[ϕ(y)2 − ϕ(y)]dy + ϕ′′′(x0) (20)

would imply thatϕ(x)→∞ asx →−∞. If c0 < 0, then (19) would imply thatϕ(x)→−∞
asx → −∞. Thus,c0 = 0. Sinceϕ′(x) > 0 for all x sufficiently large negative, (20) implies
that

∫ x0
−∞(ϕ(y)

2 − ϕ(y))dy converges, and hence, limx→−∞[ϕ′′′(x) + pϕ′(x)] = c1 exists.
Integrating, we deduce thatc1 = 0 is necessary forϕ to remain bounded. Sinceϕ(x)−ϕ(x)2 >
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0 for all−x sufficiently large, (10) implies thatϕ′ is bounded, which shows thatϕ′(x), ϕ′′(x)
andϕ′′′(x) → 0 asx → −∞. Therefore,ϕ is a homoclinic orbit of the system (6). But
we already know that (6) has no homoclinic orbits, and hence the solutionϕ is not bounded
below. As a matter of fact,ϕ also blows up at a finite point, which we may show by using an
argument similar to that in [15]. 2
3. Numerical analysis

Solitary-wave solutionsu(x, t) = φ(x − ct) of the critical surface-tension model (5) exhibit
an interesting property that for each speedµ > 2

√
c > 0 there is an even, monotone localized

solitary-wave solution, while, if 2
√
c > |µ|, the solitary waves become oscillatory at±∞. For

the numerical simulation of collisions between localized solitary waves, we chooseµ = 13/6
and two nonoscillatory solitary waves. One of these has the closed form (4), so under the
rescaling indicated above, we have

u(x, t) = 35
24 sech4

x − t
2
√

6
.

We computed a second solitary-wave solution using a numerical approximation based on the
results of Amick and Toland [23]. The nonoscillatory solitary waves are represented by even
functions satisfying the initial conditions

φ′(0) = φ′′′(0) = 0, φ′′(0) < 0,

c − 1
12[µ2 + µ√µ2+ 12c] < φ(0) < 3

2 c, φ′′(0)2 − cφ(0)2 + 2
3φ(0)

3 = 0.

For the wave speedc = (13/18)2 = 0·521605, we used a standard Runge-Kutta method
to solve the initial value problem numerically, and an interactive procedure to determine the
initial data leading to a solutionφ(x) that is monotonically decreasing to zero asx →∞. The
resulting initial conditions are

φ(0) = 0·76807209085436767, φ′′(0) = −0·0750861780309212,

φ′(0) = φ′′′(0) = 0.

The solutionφ(x) is used as a numerical estimate of the second solitary-wave solution.
The remainder of this section describes the experiment to simulate two solitary-wave solu-

tions of the critical surface-tension model and their collision. The numerical simulations are
based on a conservative, sixth-order accurate finite-difference approximation in space and
the trapezoid method for stepping in time. The trapezoid method is chosen for its stability
characteristics. The Fourier footprint of the central differences in space lies on the imaginary
axis, for which the trapezoid method is neutrally stable, independent of the temporal step size.
Methods with higher formal order of accuracy than the trapezoid method, such as the Runge-
Kutta method, may be used, although their conditional stability requires an exponentially
small time step. Other methods have positive damping, which may affect the small dispersive
waves over long integration times, making it difficult to differentiate dispersive effects from
plain numerical errors.
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Solitary waves in the critical surface-tension model107

Periodic boundary conditions are used for the computations. These boundary conditions
were chosen to avoid the introduction of spurious reflections due to the imperfections of
‘nonreflecting’ boundary conditions.

The finite-difference approximations we used are determined uniquely by writing the
Taylor-series expansion of the solution at each point on the grid, and combining the expansions
of nearby points to cancel out unwanted terms. The results are

(u2)x = −(u
2)i−3+ 9(u2)i−2 − 45(u2)i−1+ 45(u2)i+1− 9(u2)i+2 + (u2)i−3

60h
+O(h6),

uxxx =
[ −7ui−4 + 72ui−3 − 338ui−2 + 488ui−1− 488ui+1 + 338u1+2 − 72ui+3 + 7ui+4

]
240h3

+O(h6), (21)

uxxxxx =
[−13ui−5 + 152ui−4 − 783ui−3 + 1872ui−2 − 1938ui−1+ 1938ui+1 − 1872ui+2 + 783ui+3 − 152ui+4 + 13ui+5

]
288h5

+O(h6),

whereh is the uniform grid spacing. LetU be the vector of discretized solutions. The resulting
semi-discrete equation has the form

Ut + F(U) = 0,

whereF(U) is the finite difference approximation for the spatial derivatives based on (21).
Using the trapezoid method, we write

(1U)n

1t
+ F(Un)+ F(Un+1)

2
= 0,

where(1U)n = Un+1−Un. The termF(Un+1) cannot be computed at time stepn. Therefore,
we use the method of replacing it with its Taylor expansion [37, pp. 140–142]

F(Un+1) = F(Un)+ A(U)(1U)n + · · · ,
whereA(U) is the Jacobian matrix∂F(U)/∂U. Note thatA(U) is not constant, becauseF(U)
is nonlinear. We replaceA by its average between adjacent time steps, resulting in the equation

(1U)n

1t
+ F(Un)+ 1

2

[
A(Un)+ A(Un+1)

]
(1U)n = 0. (22)

A linear-equation solver cannot be applied to this equation due to theUn+1 term. However,
the iterative method

(1U)n,k+1

1t
+ F(Un)+ 1

2

[
A(Un)+ A(Un + (1U)n,k)

]
(1U)n,k+1 = 0, (1U)n,0 = 0, (23)

may be used until||(1U)n,k+1 − (1U)n,k|| < δ, at which point(1U)n = (1U)n,k+1 solves
(22) and givesUn+1. In this work, we useδ = 10−14. The linear system solver uses a direct
banded-diagonal solver with partial pivoting. The Woodbury formula [38, pp. 74–77] is used
to modify the resulting solution for the effects of the out-of-band terms (caused by the periodic
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boundary conditions). After the direct solution is completed, iterative improvements [38, pp.
49–51] are applied until theL2-norm of the error of the final linear algebra solution is less
than 10−12.

We validated the numerical algorithm on (5), using the exact solitary-wave solution for
comparison. The error∣∣∣∣∣

∣∣∣∣∣∑
i

{Un(xi)− u(xi, tn)}
∣∣∣∣∣
∣∣∣∣∣

grows linearly from zero att = 0 to 1·8×10−5 at t = 1600, which is deemed to be sufficiently
low. (The simulation is performed without the dispersion damping mechanism described
below.) The simulations are carried out with grid spacings ofh = 1

8 and time steps of
1t ≈ 0·00215 for the exact solution and1t ≈ 0·00406 for the second solution. For the
collision, the smaller time step size is used.

In propagating the second solitary-wave solution, it is found that the initial (ODE) solution
described above was insufficiently close to a solitary wave, in that small, but significant,
dispersion does take place. Before experimenting on solitary-wave collisions, a second clean
solitary wave is required. We may do this by giving the dispersive waves sufficient time to
leave the proximity of the primary wave structure. In order to avoid the excessively large
computational domain occupied by the quickly dispersing waves, a method of selectively
damping waves in the domain is employed. First, we keep the primary wave structure at the
center of the grid by moving the grid along with it. After each time step, if the grid point
corresponding to the maximumU is not the middle grid point, the grid is shifted in integer
grid spacings, so that the middle grid point does coincide with the maximumU . Periodicity
of the solution is used in determining the solution of the points that has entered the compu-
tational domain due to the grid shifting. Note that this procedure does not alter the numerical
method in any way. Second, while keeping the primary wave structure at the center of the
grid, exponential damping is applied to the outer quarters of the grid. This takes the form of
changing the solution obtained from (22) by

Un+1
i ← Un+1

i e−σγ (xi)1t .

The functionγ (x) is chosen so that it is zero in the middle half of the grid, grows smoothly
in the outer quarters of the grid and reaches 1 at the boundaries of the grid. The parameterσ

is used to control the level of damping. It is set to1
2 during damping and to zero to turn off

damping. For a 2048-interval grid, the functionγ (x) is shown in Figure 1.
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Figure 1.Damping coefficient distribution. Figure 2.L2-norm of damping effect.
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Each time damping is performed, theL2-norm of the difference between the solutions
before and after damping,i.e.,

1

1t

∑
i(Ui − U ∗i )2∑

i (U
∗
i )

2
,

is computed and normalized as shown. The variableU ∗ is that given by the finite difference
scheme, before the damping step is applied. They are plotted in Figure 2 for the exact wave
solution and the second wave solution. To ensure that dispersive wave damping does not affect
the nondispersive part of the wave, it is turned off att = 800, after dispersion has stopped.
The wave is further propagated tot = 1600 without damping to ensure that it has stopped
dispersing. At that time, no significant signals are seen outside the primary wave structure,
indicating that the wave is no longer dispersive. The figures below will show that the solution
in the regions away from the primary wave structure remain acceptably near zero.

After obtaining the two solitary-wave solutions att = 1600, we study their speeds and
shapes to check for the appropriate behavior,i.e. that they remain constant as the waves evolve.
Each wave is propagated a little further, while at each time step, a cubic-spline fit is made for
the solution over the entire domain. The peak is estimated as the global maximum of the spline,
thus it may occur between grid points. The change in peak location is divided by time-step
size to obtain the peak speed. The speeds at each time step as well as the average speed since
t = 1600 are shown in Figures 3 and 4. In addition to checking wave speed, we check the
wave shape by computing theL2 norm of the difference between each solution aftert = 1600
and the solution att = 1600. This difference is shown in Figures 5 and 6 for the two waves.
They are quite small and do not appear to be increasing. The oscillatory behavior of Figures 3
through 6 are due to the cycle of wave peak as it passes through each grid interval, reflecting
the variation in the cubic-spline fit.
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Figure 3. Numerical speed of exact solitary-wave
solution.

Figure 4. Numerical speed of second solitary-wave
solution.
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For the collision experiment, the two solutions associated with the curves in Figure 2
are used. The independently simulated solutions are combined in one grid for the collision
experiment. The solutions are shifted so that the faster wave is behind the slower wave. After
assembly, the waves are propagated for another 1024 time units. After 512 time units (still
before the waves collide) the solution is shown in Figure 7. Note in this figure and those fol-
lowing that the boundary condition is periodic, the grid continues to be shifted to be centered
around the highest point in the solution and no damping is applied. The range[−0·004,0·004]
on the abscissa is called the dispersion scale (in anticipation of the post-collision dispersion).
Figure 8 shows that before the collision, no dispersion exists. The disturbances of these solu-
tions are visible only at the error scale of[−10−9, 10−9], as shown in Figure 9. When we
interpret the collision results, any disturbances greater than the error scale will be considered
as dispersion.
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Figure 7.Solution before collision (full scale). Figure 8.Solution before collision (dispersion scale).
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Figure 9.Solution before collision (error scale). Figure 10.Solution after collision (full scale).

After the collision, the solution is shown in full scale in Figure 10. Dispersion is not visible
on this scale. However Figure 11 shows disturbances that are five orders of magnitude larger
than the error scale, trailing the two primary wave structures. By comparison to the expected
errors, this is considered to be dispersion rather than numerical errors. Therefore, we conclude
that the dispersion amplitude is approximately 0·06% of the maximal wave height. This com-
pares with a dispersive effect of about 0·3% that has been observed in the BBM model (2)
in [8] indicating that the solitary-wave solutions of the critical surface-tension model can be
considered as an order of magnitude closer to ‘integrable’ than their BBM counterparts.
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Figure 11. Solution after collision (dispersion scale).

4. Conclusions

In conclusion, we have demonstrated that in certain regimes, there are no solitary-wave solu-
tions for the critical surface-tension model. In the regimes where such solutions exist, we can
accurately approximate them using finite-difference numerical algorithms. As expected, upon
collision they experience a small dispersive effect, which indicates the nonintegrability of the
model. What is surprising is how small this dispersive interaction is, which indicates that
the model is, in some sense, extremely close to integrable, even though the ‘nearest’ known
integrable fifth-order models are not particularly close in any known analytical sense. The
numerical studies of these solutions will be continued, and we hope to report on the results of
break up of initial data, multiple collision effects, and extensions to multiplet, oscillatory and
envelope solitary waves in a subsequent publication.
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